
1

DESIGN AND ANALYSIS OF 16-BIT VEDIC MULTIPLICATION USING

COMPRESSOR ADDERS

A Project report submitted in partial fulfilment of the requirements for

the award of the degree of

BACHELOR OF TECHNOLOGY

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

Submitted by

MADHURI DASARI (317126512034),

B KASI VINAY CHOWDARY (317126512006),

N ADITYA SRI ARSHITH (317126512043).

Under the guidance of

Dr.K.V.Gowreesrinivas

Assistant Professor

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY AND SCIENCES

(UGC AUTONOMOUS)

(Permanently Affiliated to AU, Approved by AICTE and Accredited by NBA & NAAC with ‘A’

Grade)

Sangivalasa, Bheemili mandal, Visakhapatnam dist.(A.P)

(2020-2021)

1

3

ACKNOWLEDGEMENT

We would like to express our deep gratitude to our project guide Mr.Dr.K.V.Gowreesrinivas

Assistant professor, Department of Electronics and Communication Engineering, ANITS, for his

guidance with unsurpassed knowledge and immense encouragement. We are grateful to Dr. V.

Rajyalakshmi, Head of the Department, Electronics and Communication Engineering, for

providing us with the required facilities for the completion of the project work.

We are very much thankful to the Principal and Management, ANITS, Sangivalasa , for their

encouragement and cooperation to carry out this work.

We express our thanks to all teaching faculty of Department of ECE, whose suggestions during

reviews helped us in accomplishment of our project. We would like to thank all non-teaching

staff of the Department of ECE, ANITS for providing great assistance in accomplishment of our

project.

We would like to thank our parents, friends, and classmates for their encouragement throughout

our project period. Last but not the least, we thank everyone for supporting us directly or

indirectly in completing this project successfully.

 PROJECT STUDENTS

MADHURI DASARI (317126512034)

B KASI VINAY CHOWDARY (317126512006)

N ADITYA SRI ARSHITH (317126512043)

4

CONTENTS

LIST OF FIGURES 7

ABSTRACT 8

CHAPTER 1 INTRODUCTION 9

1.1 Project Objective 9

1.2 Project Outline 9

CHAPTER 2 VEDIC MATHEMATEMATICS 11

2.1 Introduction to Vedic Mathematic 11

2.2 Sixteen Sutras 13

2.3 Vedic Mathematics Sutras 14

CHAPTER 3 MULTIPLIERS 16

3.1 Introduction to Multipliers 16

3.2 Types of Multipliers 16

3.2.1 Serial Multipliers 16

3.2.2 Serial/Parallel Multiplier 16

3.2.3 Shift and Add Multiplier 17

3.2.4 Array Multipliers 18

3.2.5 Booth Multipliers 18

3.2.6 Sequential multiplier 19

 3.2.7 Wallace tree Multiplier 20

CHAPTER 4 INTRODUCTION TO COMPRESSOR

ADDERS

 4.1 What are compressor adders 21

 4.2 Types of compressor adders 21

 4.2.1 4:2 compressor adder 21

 4.2.2 7:2 compressor adder 21

 4.2.3 5:3 compressor adder 22

 4.2.4 10:4 compressor adder 23

 4.2.5 15:4 compressor adder 24

 4.2.6 20:5 compressor adder 25

 CHAPTER 5 INTRODUCTION TO VERILOG

 5.1 Definition 26

 5.2 History of Verilog 26

 5.3 Uses of Verilog 26

5

 5.4 Features of Verilog 27

 5.5 Data Types 27

 5.5.1 Integer and Real data types 27

 5.5.2 Non integer data types 27

 5.6 Nets 29

 5.7 Register 30

 5.8 Verilog string 31

 5.9 Lexical Tokens 31

 5.10 Operators 33

 5.11 Operands 35

 5.12 Verilog Module 36

CHAPTER 6 XILINX SOFTWARE5 38

6.1 Project Navigator Interface 38 25

 6.2 HDL Based Design 41 28

 6.3 VHDL 41 29

 6.4 Synthesizing the Design 44 34

CHAPTER 7 SIMULATION RESULTS 48 35

CONCLUSIONS 57

REFERENCES 58 40

6

 List of Figures

● Figure 3.1: Serial /parallel Multiplier

● Figure 3.2: Shift and add multiplier

● Figure 3.3: Array multiplier

● Figure 3.4 Booth Multiplier

● Figure 3.5: Sequential multiplier

● Figure 3.6 Wallace tree multiplier

● Fig 4.2.1 circuit diagram of 4-2 compressor adder

● Fig 4.2.2 circuit diagram of 7-2 compressor adder

● Fig 4.2.3(a) circuit diagram of 5-3 compressor adder using gates

● Fig 4.2.3(b) modified circuit diagram of 5-3 compressor adder

● Fig 4.2.4 circuit diagram of 10-4 compressor adder

● Fig 4.2.5 circuit diagram of 15-4 compressor adder

● Fig 4.2.5 circuit diagram of 20-5 compressor adder

● Figure 6.1: Project Navigator

● Figure 6.2: Project navigator Desktop

● Figure 6.3 New project Wizard- Create New Project Page

● Figure 6.4: New Project Wizard- Device Properties Page

● Figure 6.5: Specifying Synthesis Tool

● Figure 6.6: RTL Schematic

● Fig 7.1(a) 5-3 RTL schematic diagram

● Fig 7.1(b) 5-3 synthesis diagram

● Fig 7.1(c) 5-3 power report

● Fig 7.1(d) 5-3 area utilization report

● Fig 7.2(a) 10-4 RTL schematic diagram

7

● Fig 7.2(b) synthesis diagram

● Fig 7.2(c) power report

● Fig 7.2(d) Area utilization report

● Fig 7.3(a) 15-4 schematic diagram

● Fig 7.3(b) 15-4 synthesis diagram

● Fig 7.3(c) 15-4 power report

● Fig 7.3(d) 15-4 Area utilization report

● Fig 7.4(a) 20-5 RTL schematic diagram

● Fig 7.4(b) 20-5 synthesis diagram

● Fig 7.4(c) 20-5 power report

● Fig 7.4(d) 20-5 Area utilization report

● Fig 7.5 comparison of Area utilization and power of different compressor adders

8

9

ABSTRACT

A novel architecture of Vedic multiplier with ‗Urdhava-tiryakbhyam‘ methodology for 16-bit multiplier and

multiplicand is proposed with the use of compressor adders. Equations for each bit of 32-bit resultant are

calculated distinctly and compressor adders are used to implement these equations. They are chosen as they

decrease vertical critical delay in comparison to the conventional architectures of compressors implemented

using half and full adders only and so make the multiplier fast. The designs are coded in VHDL (Very High-

speed Integrated Circuits Hardware Description Language) and synthesized with Xilinx ISE 13.1 using

Spartan 3e series of FPGA (Field Programmable Gate Array). The combinational delay calculated for

proposed 16×16-bit multiplier is 32 ns. Further speed comparisons of compressor adders with traditional ones

and proposed multiplier with popular methods for multiplication are shown. Results clearly indicate the better

speed performance of our proposed Vedic multiplier.

10

CHAPTER-1

INTRODUCTION

Vedic multiplier is built on Vedic mathematics which further is extracted from the ancient Vedas by

the Sri Bharati Krishna Tirthaji in between 1911 and 1918.The specialty of Vedic mathematics is that

it gives simple way to solve the calculations which can be easily understood by human minds. This

Vedic mathematics is divided into 16 sutras which give different rules for the simplification of the

problems related to trigonometry,algebra,geometry etc. Designs based on Vedic mathematics have

been used in many applications like ALU, MAC etc. and have shown better results in terms of delay,

area. Among the 16 sutras,‗Urdhava-tiryakbhyam‘is picked as this sutra is a universal method for

multiplication and thus always remained favorite method of implementers. Previously this method

was used only for multiplication of decimal numbers but from some time it has been used and proved

to be better for binary number multiplication. Also, the increase in delay and area with the increase in

number of input bits is at a slow rate with respect to other sutras. With the selection of ‗Urdhava-

tiryakbhyam‘sutra, further selection comes with adders to add the partial products generated for the

resultant bits (s0–s31). These adders decide the speed of the multiplier and thus requirement of high-

speed adder becomes the need for concern. In this paper, we have given a novel architecture for the

separate calculation of product bits of the multiplication of multiplier and multiplicand. For this

method, compressor adders have been used over conventional architectures of half-adders and full

adders because of their higher speed performance. These compressors actually act as counters and

count the number of 1s in the given bits and thus behave as adders. They make use of multiplexer in

addition with half-adders and full adders which allow the use of lesser XOR gates and thus high

speed. With each resultant bit some carries are also generated which goes further for the calculation of

next final product bits.

1.1 PROJECT OBJECTIVE:

The main objective of this project is to study, design and analysis of 16-bit Vedic multiplier using

higher order compressor adders using VLSI (Very Large-Scale Integration) design. The Synthesis and

Implementation is done for different types of compressor adders using Xilinx Vivado. The

performance is compared in terms of power, area and delay.

1.2 PROJECT OUTLINE:

This project report is presented over the 6 remaining chapters.

Chapter 2 presents Introduction to Vedic Mathematics provides the fundamentals of vedic

11

multiplication using Urdhava-Tiryakbham sutra.

Chapter 3 explains Introduction to Multipliers and different types of multipliers.

Chapter 4 is about Introduction to Compressor Adders and its different types.

Chapter 5 describes Introduction to Verilog.

Chapter 6 mainly gives the description about working withXILINX ISE DESIGN SUITE.

Chapter 7 presents the simulation results which are simulated using Vivado Design Suite simulator.

Finally,the results of the project work and conclusions are drawn.

12

CHAPTER 2

INTRODUCTION TO VEDIC MATHEMATICS

In this chapter we just recall some notions given in the book on Vedic Mathematics written by

Jagadguru Swami Sri Bharati Krsna Tirthaji Maharaja (Sankaracharya of Govardhana Matha,

Puri, Orissa, India), General Editor, Dr. V.S. Agrawala. Before we proceed to discuss the Vedic

Mathematics that he professed we give a brief sketch of his heritage.

He was born in March 1884 to highly learned and pious parents. His father Sri P Narasimha

Shastri was in service as a Tahsildar at Tinnevelly (Madras Presidency) and later retired as a

Deputy Collector. His uncle, Sri Chandrasekhar Shastri was the principal of the Maharajas

College, Vizianagaram and his great grandfather was Justice C. Ranganath Shastri of the

Madras High Court. Born Venkatraman he grew up to be a brilliant student and invariably won

the first place in all the subjects in all classes throughout his educational career. During his

school days, he was a student of National College Tiruchirapalli; Church Missionary Society

College, Tinivelli and Hindu College Tinnivelly in Tamil Nadu. He passed his matriculation

examination from the Madras University in 1899 topping the list as usual. His extraordinary

proficiency in Sanskrit earned him the title ―Saraswati '' from the Madras Sanskrit Association

in July 1899. After winning the highest place in the B.A examination Sri Venkataraman appeared

for the M.A. examination of the American College of Sciences, Rochester, New York from the

Bombay center in 1903. His subject of examination was Sanskrit, Philosophy, English,

Mathematics, History and Science. He had a superb retentive memory.

In 1911 he could not anymore resist his burning desire for spiritual knowledge, practice and

attainment and therefore, tearing himself off suddenly from the work of teaching, he went back

to Sri Sacchidananda Shivabhinava Nrisimha Bharati Swami at Sringeri. He spent the next eight

years in the profoundest study of the most advanced Vedanta Philosophy and practice of the

Brahmasadhana.

After several years in 1921 he was installed on the pontifical throne of Sharada Peetha

Sankaracharya and later in 1925 he became the pontifical head of Sri Govardhan Math Puri

13

where he served the remainder of his life spreading the holy spiritual teachings of Sanatana

Dharma.

In 1957, when he decided finally to undertake a tour of the U.S.A he rewrote from his

memory the present volume of Vedic Mathematics giving an introductory account of the sixteen

formulae reconstructed by him. This is the only work on mathematics that has been left behind by

him.

Now we proceed on to give the 16 sutras (aphorisms or formulae) and their corollaries. As

claimed by the editor, the list of these main 16 sutras and of their sub-sutras or corollaries is

prefixed in the beginning of the text and the style of language also points to their discovery by

Sri Swamiji himself. This is an open acknowledgement that they are not from the Vedas. Further

the editor feels that at any rate it is needless to dwell longer on this point of origin since the vast

merit of these rules should be a matter of discovery for each intelligent reader.

14

Sl. No Sutras Sub sutras or Corollaries

1
Ekādhikena Pūrvena(also a corollary)

Ānurūpyena

2 Nikhilam Navataścaramam Daśatah Śisyate Śesamjnah

3 Ūrdhva - tiryagbhyām Ādyamādyenantyamantyena

4 Parāvartya Yojayet Kevalaih Saptakam Gunỹat

5 Sūnyam Samyasamuccaye Vestanam

6 (Ānurūpye) Śūnyamanyat Yāvadūnam Tāvadūnam

7 Sankalana - vyavakalanābhyām Yāvadūnam Tāvadūnīkrtya

Vargaňca Yojayet

8 Puranāpuranābhyām Antyayordasake‘ pi

9 Calanā kalanābhyām Antyayoreva

10 Yāvadūnam Samuccayagunitah

11 Vyastisamastih Lopanasthāpanabhyām

12 Śesānyankena Caramena Vilokanam

13 Sopantyadvayamantyam Gunitasamuccayah

Samuccayagunitah

15

16

15

The main sutra is given by ‗URDHVA TRIYAKBHYAM‘ which means Vertical cross wise

Urdhva-triyakbhyam sutra which is the General Formula applicable to all cases of multiplication

and will also be found very useful later on in the division of a large number by another large

number.

The formula itself is very short and terse, consisting of only one compound word and means

―vertically and cross-wise.‖ The applications of this brief and terse sutra are manifold.

This sutra has been identified for use in the present work since it gives a general formula that is

applicable to all cases of multiplication (large bit multiplication, small bit multiplication and

modular multiplication) and is also very compact in the division of a large number by another large

number, for example division of a 15-digit number by a 5-digit number. The algebraic principle

involved is explained as follows

Multiplication Using Urdhva Triyakbhyam Sutra:

Suppose we have to multiply (ax+b) by (cx+d). The product is acx² + x(ad+bc) + bd. This can be

obtained as follows:

Step 1: The coefficient of x² is obtained by the vertical multiplication of a and c

Step 2: The coefficient of x is obtained by the crosswise multiplication of a and d and of b and c

and the addition of the two products

Step 3: The independent term is arrived at by vertical multiplication of the absolute terms b and

d.

A simple example will suffice to clarify the modus operandi thereof. Suppose we have to multiply

12 by 13.

(i) We multiply the left hand most digit 1 of the 12 multiplicands vertically by the left hand most 13

digit 1 of the multiplier get their product 1 1:3 + 2:6 = 156 and set down as the left hand most

part of the answer;

(i) We then multiply 1 and 3 and 1 and 2 crosswise add the two get 5 as the sum and set it down as

the middle part of the answer; We multiply 2 and 3 vertically get 6 as their product and put it down

as the last the right hand most part of the answer. Thus 12 ´ 13 = 156.

Example of 8X8 bit multiplication:

Let A be the 8-bit multiplicand and B be the 8-bit multiplier. These can be further divided into 4-

bit terms as shown below:

A = A7A6A5A4 A3A2A1A0

X1 X0

B = B7B6B5B4 B3B2B1B0

Y1 Y0

So A = X1 X0 (8 bit Multiplicand)

B = Y1Y0 (8 bit Multiplier)

16

where X1, X0, Y1, Y0 are each of 4-bits. Multiplying, we get a 16-bit product, which is

further divided into 4 four-bit terms, F, E, D, C.

X1 X0 x Y1Y0 = F E D C

1. CP = X0 x Y0 = C.

2. CP = X1 x Y0 + X0 x Y1 = D

3 CP = X1 x Y1 = F E

where F is the carry of the product of X1 x Y1 and CP is the cross product

Note: 1. Each Multiplication operation is an embedded parallel 4 x 4 multiply module.

2. The carry generated in each of the multiplication modules is propagated to the next module.

This multiplier architecture has the advantage compared of minimal gate delays and improved

regularity of structure.

The process is further explained with the help of examples. Two digit and three digit

multiplication examples are explained using decimal numbers and the multiplication process

is shown with the help of lines. The digits on either side of the line are multiplied and the result

is added to the previous carry and the process is continued.

17

CHAPTER 3

INTRODUCTION TO MULTIPLIERS

Multipliers play an important role in today‘s digital signal processing and various other

applications. With advances in technology, many researchers have tried and are trying to design

multipliers which offer either of the following design targets – high speed, low power

consumption, regularity of layout and hence less area or even combination of them in one

multiplier thus making them suitable for various high speed, low power and compact VLSI

implementation.

The common multiplication method is ―add and shift‖ algorithm. In parallel multipliers number

of partial products to be added is the main parameter that determines the performance of the

multiplier

To reduce the number of partial products to be added, Modified Booth algorithm is one of the

most popular algorithms.

To achieve speed improvements Wallace Tree algorithm can be used to reduce the number of

sequential adding stages.

Further by combining both Modified Booth algorithm and Wallace Tree technique we can see

advantage of both algorithms in one multiplier.

However, with increasing parallelism, the number of shifts between the partial products and

intermediate sums to be added will increase which may result in reduced speed, increase in

silicon area due to irregularity of structure and also increased power consumption due to

increase in interconnect resulting from complex routing.

On the other hand, ―serial-parallel‖ multipliers compromise speed to achieve better

performance for area and power consumption. The selection of a parallel or serial multiplier

actually depends on the nature of application. In this lecture we introduce the multiplication

algorithms and architecture and compare them in terms of speed, area, power and combination

of these metrics.

 3.1 TYPES OF MULTIPLIERS

SERIAL MULTIPLIER: Where area and power are of utmost importance and delay can be

tolerated the serial multiplier is used. This circuit uses one adder to add the m * n partial

products.

Serial/Parallel Multiplier: One operand is fed to the circuit in parallel while the other is serial.

N partial products are formed each cycle. On successive cycles, each cycle does the addition

of one column of the multiplication table of M*N PPs. The final results are stored in the output

register after N+M cycles

18

Figure 3.1: Serial /parallel Multiplier

Shift and Add Multiplier: Depending on the value of multiplier LSB bit, a value of the

multiplicand is added and accumulated. At each clock cycle the multiplier is shifted one bit to

the right and its value is tested. If it is a 0, then only a shift operation is performed. If the value

is a 1, then the multiplicand is added to the accumulator and is shifted by one bit to the right.

After all the multiplier bits have been tested the product is in the accumulator. The accumulator

is 2N (M+N) in size and initially the N, LSBs contains the Multiplier. The delay is N cycles

maximum. This circuit has several advantages in asynchronous circuits

Figure 3.2: Shift and add multiplier

19

Array Multipliers: Array multiplier is well known due to its regular structure. Multiplier

circuit is based on add and shift algorithm. Each partial product is generated by the

multiplication of the multiplicand with one multiplier bit. The partial product are shifted

according to their bit orders and then added. The addition can be performed with normal carry

propagate adder. N-1 adders are required where N is the multiplier length.

Figure 3.3: Array multiplier

Booth Multipliers: It is a powerful algorithm for signed-number multiplication, which treats

both positive and negative numbers uniformly. For the standard add-shift operation, each

multiplier bit generates one multiple of the multiplicand to be added to the partial product. If

the multiplier is very large, then a large number of multiplicands have to be added. In this case

the delay of multiplier is determined mainly by the number of additions to be performed. If

there is a way to reduce the number of the additions, the performance will get better. Booth

algorithm is a method that will reduce the number of multiplicand multiples. For a given range

of numbers to be represented, a higher representation radix leads to fewer digits. Since a k-bit

binary number can be interpreted as K/2-digit radix-4 number, a K/3-digit radix-8 number, and

so on, it can deal with more than one bit of the multiplier in each cycle by using high radix

multiplication.

20

Figure 3.4 Booth Multiplier

Sequential multiplier: If we want to multiply two binary number (multiplicand X has n bits

and multiplier Y has m bits) using single n bit adder, we can build a sequential circuit that

processes a single partial product at a time and then cycle the circuit m times. This type of

circuit is called sequential multiplier. Sequential multipliers are attractive for their low area

requirement. In a sequential multiplier, the multiplication process is divided into some

sequential steps. In each step some partial products will be generated, added to an accumulated

partial sum and partial sum will be shifted to align the accumulated sum with partial product

of next steps. Therefore, each step of a sequential multiplication consists of three different

operations which are generating partial products, adding the generated partial products to the

accumulated partial sum and shifting the partial sum.

Figure 3.5: Sequential multiplier

21

Wallace tree Multiplier: A Wallace tree is a efficient hardware implementation of a digital

circuit that multiplies two integers. It was devised by the Australian computer scientist Chris

Wallace in 1964.

The Wallace tree has three steps:

1. Multiply (that is – AND) each bit of one of the arguments, by each bit of the other,

yielding n ^2 results. Depending on position of the multiplied bits, the wires carry

different weights, for example wire of bit carrying result of is 128 (see explanation of

weights below).

2. Reduce the number of partial products to two by layers of full and half adders.

3. Group the wires in two numbers, and add them with a conventional adder

The second step works as follows. As long as there are three or more wires with the same

weight add a following layer: -

 Take any three wires with the same weights and input them into a Full adder. The result

will be an output wire of the same weight and an output wire with a higher weight for each

three input wires.

 If there are two wires of the same weight left, input them into a Half adder

 If there is just one wire left, connect it to the next layer.

The benefit of the Wallace tree is that there are only reduction layers, and each layer

has O (1) propagation delay. As making the partial products is O (1) and the final addition

is O (log n), the multiplication is only, not much slower than addition (however, much more

expensive in the gate count). Naively adding partial products with regular adders would require

O (log
2
 n) time.

Figure 3.6 Wallace tree multiplier

22

CHAPTER 4

INTRODUCTION TO COMPRESSOR ADDERS

4.1 WHAT ARE COMPRESSOR ADDERS

Compressor adders are basic circuits which add bits more than four at a time to give better delay results

over the combinational circuits of half and full adders. The symbolic representation of compressor

architecture is N − r where ‗N‘ represents the number of the bits that are fed and ‗r‘ represents the total

count of the 1s present in N bits. It actually reduces the gate counts and delay in comparison to adder

circuits and that is why named as compressor. A large part of research has been done in improving the

circuits of lower compressors. Along with this, higher compressors are also implemented to add higher

number of bits. The main compressor architectures which are used widely are 4-2,7-2, 5-3, 10-4, 15-4

and 20-5.

4.2 TYPES OF COMPRESSOR ADDERS

4-2 COMPRESSOR ADDER: A 4-2 compressor compresses four inputs plus one carry bit ‗Cin' from

the previous column into two outputs ‗Sum' and ‗Carry' plus one intermediate carry bit ‗Cout' that is

provided as Cin to the next column, as the name implies.

The 4-2 compressor's input and output relationship can be expressed mathematically as

Cin+X4+X3+X2+X1 = Sum+2(Carry+Cout). As shown in Fig., implementing a 4-2 compressor using

basic cascading of full adders introduces a critical path delay of four XOR gates. As shown in Fig. 2,

logical optimization reduces the critical path delay to three XOR gates, and this 4-2 compressor is

considered a traditional model.

The traditional 4-2 compressor's Boolean equations are as follows: Sum = Cin X4 X3 X2 X1 Carry =

(X4 X3 X2 X1) Cin + (X4 X3 X2 X1) X4 Cout = (X2 X1) X3 + (X2 X1) X1

 Fig 4.2.1 circuit diagram of 4-2 compressor adder

7-2 COMPRESSOR ADDER: Similar to its 4:2 compressor counterpart, the 7:2 compressor as shown

in Fig. 6., is capable of adding 7 bits of input and 2 carries from the previous stages, at a time. In our

implementation, we have designed a novel 7:2 compressor utilizing two 4:2 compressors, two full

adders and one-half adder. The architecture for the same has been shown in Fig. 7. As mentioned

earlier, since the 4:2 compressor shows a significant increase in speed by around 66.6%, utilizing the

same in this architecture would improve the efficiency as opposed to a conventional approach of

adding nine bits at a time using only full adders and half adders. This leads to a great improvisation in

speed of the processor. Through experimentation on a Xilinx Spartan-3e FPGA, it was found that the

novel 7:2 compressor adder architecture introduced here is 1.05 times faster than a conventional

approach. This result justifies the need of utilizing this compressor in our design.

23

 Fig 4.2.2 circuit diagram of 7-2 compressor adder

5-3 COMPRESSOR ADDER: A 5-3 compressor adder is a logical circuit in which maximum five

bits can be added at the same time and three bits resultant of maximum value 101 is obtained. The

circuit uses three 4:1 multiplexer. This multiplexer allows only one output to be high at a time and this

property makes the multiplier fast and low power consuming circuit [13–15]. The circuit is reorganized

in such a way that only 3 XOR operations are used instead of 5 XOR operations (in case of

conventional 5-3 compressor) and other two inputs (X3 and X4) acts as a control signal. The

conventional and the modified 5-3 compressor adder circuit are shown in

24

 Fig 4.2.3(a) circuit diagram of 5-3 compressor adder using gates

 Fig 4.2.3(b) modified circuit diagram of 5-3 compressor adder

10-4 COMPRESSOR ADDER: Its circuitry takes ten inputs, adds them and gives four-bit output. The

maximum resultant can be 1010. It makes use of two 5- 3 compressors, two full adders and a half adder

at the required position. Because of the use of modified 5-3 compressor circuitry, this compressor

shows lesser delay and gate counts making the multiplier fast and ultimately the processer. The given

below represents the modified circuitry of the 10-4 compressor.

25

 Fig 4.2.4 circuit diagram of 10-4 compressor adder

15-4 COMPRESSOR ADDER: Similar to the 5-3, 10-4 compressor adders, 15-4 compressors feed 15

bits at a time and give four-bit resultant which can go to extreme value of 1111. Its circuitry contains

two 5-3 compressors, five full adders and one 4-bit parallel adder. The inputs are given in a group of

three to the five full adders. Then the sum bits of all five full adder are added using one 5-3 compressor

and the carry bits of the full adders are fed to another 5-3 compressor. Further a 4-bit parallel adder is

used to add the outputs of these two 5-3 compressor and gives the final result. The given below

represents the circuit of 15-4 compressor adder.

 Fig 4.2.5 circuit diagram of 15-4 compressor adder

26

20-5 COMPRESSOR ADDER: In the proposed design we need to add 19 bits at the same time and so

need to use a higher compressor adder circuit. In 20-5 compressor circuit, it converts 20 partial

products into five output bits having maximum value of 10010. This makes use of one 15-4

compressor, one 5-3 compressor, two half-adders and two full adders. The improved architectures of

lower compressors 15-4 and 5-3 bring speed improvement in its circuit in comparison with

conventional architectures containing only full and half-adders. The 20-5 compressor adder circuit is

shown in the figure

 Fig 4.2.5 circuit diagram of 20-5 compressor adder

27

CHAPTER 5

INTRODUCTION TO VERILOG

5.1 DEFINITION:

Verilog is a HARDWARE DESCRIPTION LANGUAGE (HDL), which is used to describe a digital

system such as a network switch or a microprocessor or a memory a flip-flop. Verilog was developed

to simplify the process and make the HDL more robust and flexible. Today, Verilog is the most popular

HDL used and practiced throughout the semiconductor industry was developed to enhance the design

process by allowing engineers to describe the desired hardware's functionality and let automation tools

convert that behavior into actual hardware elements like combinational gates and sequential logic.

Verilog is like any other hardware description language. It permits the designers to design the designs

in either Bottom-up or Top-down methodology.

Bottom-Up Design:

The traditional method of electronic design is bottom-up. Each design is performed at the gate-level

using the standards gates. This design gives a way to design new structural, hierarchical design

methods.

Top-Down Design:

It allows early testing, easy change of different technologies, and structured system design and offers

many other benefits.

5.2 HISTORY OF VERILOG:

Verilog HDL's history goes back to the 1980s when a company called Gateway Design Automation

developed a logic simulator, Verilog-XL, and a hardware description language. Cadence Design

Systems acquired Gateway in 1989 and with it the rights to the language and the simulator. In 1990,

Cadence put the language into the public domain, with the intention that it should become a standard,

non-proprietary language. The Verilog HDL is now maintained by a nonprofit making organization,

Accellera, formed from the merger of Open Verilog International (OVI) and VHDL International. OVI

had the task of taking the language through the IEEE standardization procedure. In December 1995,

Verilog HDL became IEEE Std. 1364-1995. A significantly revised version was published in 2001:

IEEE Std. 1364-2001.

There was a further revision in 2005, but this only added a few minor changes.

Accellera has also developed a new standard, System Verilog, which extends Verilog.

System Verilog became an IEEE standard (1800-2005) in 2005.

28

5.3 USES OF VERILOG:

Verilog creates a level of abstraction that helps hide away the details of its implementation and

technology. For example, a D flip-flop design would require the knowledge of how the transistors need

to be arranged to achieve a positive-edge triggered FF and what the rise, fall, and CLK-Q times

required to latch the value onto a flop among much other technology-oriented details. Power

dissipation, timing, and the ability to drive nets and other flops would also require a more thorough

understanding of a transistor's physical characteristics. Verilog helps us to focus on the behavior and

leave the rest to be sorted out later.

5.4 FEATURES OF VERILOG:

 Verilog is case sensitive.

 In Verilog, Keywords are defined in lower case.

 In Verilog, most of the syntax is adopted from "C" language.

 Verilog can be used to model a digital circuit at Algorithm, RTL, Gate and Switch level.

 There is no concept of package in Verilog.

 It also supports advanced simulation features like TEXTIO, PLI, and UDPs.

5.5 DATA TYPES:

Verilog introduces several new data types. These data types make RTL descriptions easier to write and

understand. The data storage and transmission elements found in digital hardware are represented using

a set of Verilog Hardware Description Language (HDL) data types.In Verilog, data types are divided

into NETS and Registers. These data types differ in the way that they are assigned and hold values, and

also, they represent different hardware structures.

The Verilog HDL value set consists of four basic values:

5.5.1

INTE

GER

AND

REAL

DATA TYPES:

Many data types will be familiar to C programmers. The idea is that algorithms modeled in C can be

converted to Verilog if the two languages have the same data types. Verilog introduces new two-state

Value Description

0 Logic zero or false

1 Logic one or true

X Unknown logical value

Z The high impedance of the tri-state gate

29

data types, where each bit is 0 or 1 only. Using two-state variables in RTL models may enable

simulators to be more efficient. And they are not affecting the synthesis results.

Types Description

bit user-defined size

byte 8 bits, signed

shortint 16 bits, signed

int 32 bits, signed

longint 64 bits, signed

 Two-state integer types:

Unlike in C, Verilog specifies the number of bits for the fixed-width types

 F

our-

state

integer

types:

We preferred logic because it is better than reg. We can use logic where we have used reg or wire.

Type Description

time 64-bit unsigned

shortreal like a float in C

shortreal like double in C

realtime identical to real

5.5.2 NON-INTEGER DATA TYPES:

 Arrays:

In Verilog, we can define scalar and vector nets and variables. We can also define memory arrays,

which are one-dimensional arrays of a variable type. Verilog allowed multi-dimensioned arrays of both

nets and variables and removed some of the restrictions on memory array usage. Verilog takes this a

stage further and refines the concept of arrays and permits more operations on arrays. In Verilog, arrays

may have either packed or unpacked dimensions, or both.

Types Description

reg user-defined size

logic identical to reg in every way

integer 32 bits, signed

30

 Packed dimensions:

 Are guaranteed to be laid out contiguously in memory.

 It can be copied on to any other packed object.

 Can be sliced ("part-selects").

 Are restricted to the "bit" types (bit, logic, int, etc.), some of which (e.g., int) have a fixed size.

 Unpacked dimensions:

 It can be arranged in memory in any way that the simulator chooses. We can reliably copy an array

on to another array of the same type.

 For arrays with different types, we have to use a cast, and there are rules for how an unpacked type

is cast to a packed type.

 Verilog permits several operations on complete unpacked arrays and slices of unpacked arrays.

 For these, the arrays or slices involved must have the same type and shape, i.e., the same number

and lengths of unpacked dimensions.

 The packed dimensions may differ, as long as the array or slice elements have the same number of

bits.

The permitted operations are:

 Reading and writing the whole array.

 Reading and writing array slices.

 Reading and writing array elements.

 Equality relations on arrays, slices, and elements

Verilog also includes dynamic arrays (the number of elements may change during simulation) and

associative arrays (which have a non-contiguous range). Verilog includes several arrays of querying

functions and methods to support all these array types.

5.6 NETS:

Nets are used to connect between hardware entities like logic gates and hence do not store any value.

The net variables represent the physical connection between structural entities such as logic gates.

These variables do not store values except trireg. These variables have the value of their drivers, which

changes continuously by the driving circuit. Some net data types are wire, tri, wor, trior, wand, triand,

tri0, tri1, supply0, supply1, and trireg.

A net data type must be used when a signal is:

The output of some devices drives it.

It is declared as an input or in-out port.

On the left-hand side of a continuous assignment.

1. Wire:

31

A wire represents a physical wire in a circuit and is used to connect gates or modules. The value of a

wire can be read, but not assigned to, in a function or block. A wire does not store its value but must be

driven by a continuous assignment statement or by connecting it to the output of a gate or module.

2. Wand (wired-AND)

The value of a wand depends on logical AND of all the drivers connected to it.

3. Wor (wired-OR)

The value of wor depends on the logical OR of all the drivers connected to it.

4. Tri (three-state)

All drivers connected to a tri must be z, except one that determines the tri's value.

5. Supply0 and Supply1

Supply0 and supply1 define wires tied to logic 0 (ground) and logic 1 (power).

5.7 REGISTERS:

A register is a data object that stores its value from one procedural assignment to the next. They are

used only in functions and procedural blocks. An assignment statement in a procedure acts as a trigger

that changes the value of the data storage element.

Reg is a Verilog variable type and does not necessarily imply a physical register. In multi-bit registers,

data is stored as unsigned numbers, and no sign extension is done for what the user might have thought

were two's complement numbers. Some register data types are reg, integer, time, and real.reg is the

most frequently used type. Reg is used for describing logic. An integer is general-purpose variables.

They are used mainly loops-indices, parameters, and constants. They store data as signed numbers,

whereas explicitly declared reg types store them as unsigned. If they hold numbers that are not defined

at compile-time, their size will default to 32-bits. If they hold constants, the synthesizer adjusts them to

the minimum width needed at compilation. Real in system modules. Time and Realtime for storing

simulation times in test benches. Time is a 64-bit quantity that can be used in conjunction with the

$time system task to hold simulation time.

Note: A reg need not always represent a flip-flop because it can also represent combinational logic.

The reg variables are initialized to x at the start of the simulation. Any wire variable not connected to

anything has the x value. The size of a register or wire may be specified during the declaration. When

the reg or wire size is more than one bit, then register and wire are declared vectors.

5.8 VERILOG STRING:

32

Strings are stored in reg, and the width of the reg variable has to be large enough to hold the string.

Each character in a string represents an ASCII value and requires 1 byte. If the variable's size is smaller

than the string, then Verilog truncates the leftmost bits of the string. If the variable's size is larger than

the string, then Verilog adds zeros to the left of the string.

5.9 LEXICAL TOKENS:

Lexical conventions in Verilog are similar to the C programming language. Verilog language source

text files are a stream of lexical tokens. A lexical token may consist of one or more characters, and

every single character is in exactly one token.

The tokens can be keywords, comments, numbers, white space, or strings. All lines should be

terminated by a semi-colon (;). Verilog HDL is a case-sensitive language. And all keywords are in

lowercase.

White Space

White space can contain the characters for tabs, blanks, newlines, and form feeds. These characters are

ignored except when they serve to separate other tokens. However, blanks and tabs are significant in

strings.

Comments

There are two types to represent the comments, such as:

Single line comments begin with the token // and end with a carriage return.

For example, //this is the single-line syntax.

Multi-Line comments begin with the token /* and end with the token */

For example, /* this is multiline syntax*/

Numbers

We can specify constant numbers in binary, decimal, hexadecimal, or octal format. Negative numbers

are represented in 2's complement form. The question mark (?) character is the Verilog alternative for

the z character when used in a number. The underscore character (_) is legal anywhere in a number, but

it is ignored as the first character.

1. Integer Number

Verilog HDL allows integer numbers to be specified as:

 Sized or unsized numbers (Unsized size is 32 bits).

 In a radix of decimal, hexadecimal, binary or octal.

 Radix and hex digits (a,b,c,d) are case insensitive.

33

 Spaces are allowed between the radix, size, and value.

Syntax

The syntax is given as:

<size>'<radix><value>

2. Real Numbers

 Verilog supports real constants and variables.

 Verilog converts real numbers to integers by rounding.

 Real Numbers can not contain 'A' and 'X'.

 Real numbers may be specified in either decimal or scientific notation.

< value >.< value >

< mantissa >E< exponent >

 Real numbers are rounded off to the nearest integer when assigning to an integer.

3. Signed and Unsigned Numbers

Verilog supports both the type of numbers, but with certain restrictions. In C language, we don't have

int and unint types to say if a number is signed integer or unsigned integer. Any number that does not

have a negative sign prefix is positive. Or indirect way would be "Unsigned".

Negative numbers can be specified by putting a minus sign before the size for a constant number, thus

become signed numbers. Verilog internally represents negative numbers in 2's complement format. An

optional signed specifier can be added for signed arithmetic.

4. Negative Numbers

Negative numbers are specified by placing a minus (-) sign before the size of a number. It is illegal to

have a minus sign between base format and number.

Identifiers

 The identifier is the name used to define the object, such as a function, module, or register.

Identifiers should begin with alphabetical characters or underscore characters.

For example, A_Z and a_z.

 Identifiers are a combination of alphabetic, numeric, underscore, and $ characters. They can be up

to 1024 characters long.

 Identifiers must begin with an alphabetic character or the underscore character (a-z A-Z_).

 Identifiers may contain alphabetic characters, numeric characters, the underscore, and the dollar

sign (a-z A-Z 0-9 _ $).

 Identifiers can be up to 1024 characters long.

34

Escaped Identifiers

Verilog HDL allows any character to be used in an identifier by escaping the identifier. Escaped

identifiers are including any of the printable ASCII characters in an identifier. The decimal values 33

through 126, or 21 through 7E in hexadecimal.

Escaped identifiers begin with the backslash (\). The backslash escapes the entire identifier. The

escaped identifier is terminated by white space characters such as commas, parentheses, and

semicolons become part of the escaped identifier unless preceded by white space. Terminate escaped

identifiers with white space. Otherwise, characters that should follow the identifier are considered part

of it.

5.10 OPERATORS

Operators are special characters used to put conditions or to operate the variables. There are one, two,

and sometimes three characters used to perform operations on variables.

1. Arithmetic Operators

These operators perform arithmetic operations. The + and -are used as either unary (x) or binary (z-y)

operators. The operators included in arithmetic operation are addition, subtraction, multiplication,

division, and modulus.

2. Relational Operators

These operators compare two operands and return the result in a single bit, 1 or 0. The Operators

included in relational operation are:

== equal to

!= not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

3. Bit-wise Operators

Bit-wise operators do a bit-by-bit comparison between two operands. The Operators included in Bit-

wise operation are:

35

& Bit-wise AND

| Bit-wise OR

~ Bit-wise NOT

^ Bit-wise XOR

~^ or ^~ Bit-wise XNOR

4. Logical Operators

Logical operators are bit-wise operators and are used only for single-bit operands. They return a single

bit value, 0 or 1. They can work on integers or groups of bits, expressions and treat all non-zero values

as 1. Logical operators are generally used in conditional statements since they work with expressions.

The operators included in Logical operation are:

! logical NOT

&& logical AND

|| logical OR

5.Reduction Operators

Reduction operators are the unary form of the bitwise operators and operate on all the bits of an

operand vector. These also return a single-bit value. The operators included in Reduction operation are:

& reduction AND

| reduction OR

~& reduction NAND

~| reduction NOR

^ reduction XOR

~^ or ^~ reduction XNOR

6. Shift Operators

Shift operators are shifting the first operand by the number of bits specified by the second operand in

the syntax. Vacant positions are filled with zeros for both directions, left and right shifts (There is no

use sign extension). The Operators included in Shift operation are:

<< shift left

>> shift right

36

7. Concatenation Operator

The concatenation operator combines two or more operands to form a larger vector. The operator

included in Concatenation operation is: { }

8. Replication Operator

The replication operator is making multiple copies of an item. The operator used in Replication

operation is:

{n{item}} (n fold replication of an item)

9. Conditional Operator

Conditional operator synthesizes to a multiplexer. It is the same kind as is used in C/C++ and evaluates

one of the two expressions based on the condition. The operator used in Conditional operation is:

(Condition)?:

5.11 OPERANDS

Operands are expressions or values on which an operator operates or works. All expressions have at

least one operand.

1. Literals

Literals are constant-valued operands that are used in Verilog expressions. The two commonly used

Verilog literals are:

String: A literal string operand is a one-dimensional array of characters enclosed in double quotes ("

").

Numeric: A constant number of the operand is specified in binary, octal, decimal, or hexadecimal

number.

2. Wires, Regs, and Parameters

Wires, regs, and parameters are the data types used as operands in Verilog expressions. Bit-Selection

"x [2]" and Part-Selection "x [4:2]"

Bit-selects and part-selects are used to select one bit and multiple bits, respectively, from a wire, regs

or parameter vector using square brackets "[]".

3. Function Calls

In the Function calls, the return value of a function is used directly in an expression without first

37

assigning it to a register or wire. It just places the function call as one of the types of operands. It is

useful to know the bit width of the return value of the function call.

5.12 VERILOG MODULE:

A module is a block of Verilog code that implements certain functionality. Modules can be embedded

within other modules, and a higher-level module can communicate with its lower-level modules using

their input and output ports.

Syntax

A module should be enclosed within a module and end module keywords. The name of the module

should be given right after the module keyword, and an optional list of ports may be declared as well.

Note: The ports declared in the list of port declarations cannot be re-declared within the module's body.

module <name> ([port_list]);

 // Contents of the module

end module

 // A module can have an empty port list

module name;

 // Contents of the module

end module

All variable declarations, functions, tasks, dataflow statements, and lower module instances must be

defined within the module and end module keywords.

Purpose of a Module

A module represents a design unit that implements specific behavioral characteristics and will get

converted into a digital circuit during synthesis. Any combination of inputs can be given to the module,

and it will provide a corresponding output.

It allows the same module to be reused to form more significant modules that implement more complex

hardware.

Hardware Schematic

Instead of building up smaller blocks to form bigger design blocks, the reverse process can also be

done.

Consider the breakdown of a simple GPU engine into smaller components such that each can be

38

represented as a module that implements a specific feature

39

CHAPTER 6

 XILINX SOFTWARE

The ISE® Design Suite controls all aspects of the design flow. Through the Project Navigator
interface, you can access all of the design entry and design implementation tools. You can also
access the files and documents associated with your project.

6.1 Project Navigator Interface

By default, the Project Navigator interface is divided into four panel sub-windows, as seen in
Figure 4.1. On the top left are the Start, Design, Files, and Libraries panels, which include
display and access to the source files in the project as well as access to running processes for
the currently selected source. The Start panel provides quick access to opening projects as well
as frequently access reference material, documentation and tutorials. At the bottom of the
Project Navigator are the Console, Errors, and Warnings panels, which display status
messages, errors, and warnings. To the right is a
multi-document interface (MDI) window referred to as the Workspace. The Workspace
enables you to view design reports, text files, schematics, and simulation waveforms. Each
window can be resized, undocked from Project Navigator, moved to a new location within the
main Project Navigator window, tiled, layered, or closed. You can use the View > Panels
menu commands to open or close panels. You can use the Layout > Load Default Layout to
restore the default window layout. These windows are discussed in more detail in the
following sections.

Figure 6.1: Project Navigator

Design Panel

The design panel provides access to the view, Hierarchy ad process panes.

40

View Pane

The View pane radio buttons enable you to view the source modules associated with the

Implementation or Simulation Design View in the Hierarchy pane. If you select Simulation,

you must select a simulation phase from the drop-down

Hierarchy Pane

The Hierarchy pane displays the project name, the target device, user documents, and design source

files associated with the selected Design View. The View pane at the top of the Design panel allows

you to view only those source files associated with the selected Design View, such as Implementation

or Simulation.

Each file in the Hierarchy pane has an associated icon. The icon indicates the file type (HDL
file, schematic, core, or text file, for example). For a complete list of possible sources types
and their associated icons, see the ―Source File Types‖ topic in the ISE Help. From Project
Navigator, select Help > Help Topics to view the ISE Help.

If a file contains lower levels of hierarchy, the icon has a plus symbol (+) to the left of the
name. You can expand the hierarchy by clicking the plus symbol (+). You can open a file for
editing by double-clicking on the filename.

Processes Pane

The Processes pane is context sensitive, and it changes based upon the source type selected in
the Sources pane and the top-level source in your project. From the Processes pane, you can
run the functions necessary to define, run, and analyze your design. The Processes pane
provides access to the following functions:

 Design Summary/Reports

Provides access to design reports, messages, and summary of results data. Message filtering
can also be performed.

 Design Utilities

Provides access to symbol generation, instantiation templates, viewing command line history,
and simulation library compilation.

 User Constraints

Provides access to editing location and timing constraints.

 Synthesis

Provides access to Check Syntax, Synthesis, View RTL or Technology Schematic, and
synthesis reports. Available processes vary depending on the synthesis tools you use.

 Implement Design

Provides access to implementation tools and post-implementation analysis tools.

 Generate Programming File

Provides access to bitstream generation.

Configure Target Device

Provides access to configuration tools for creating programming files and programming the

device.

41

The Processes pane incorporates dependency management technology. The tools keep track
of which processes have been run and which processes need to be run. Graphical status
indicators display the state of the flow at any given time. When you select a process in the
flow, the software automatically runs the processes necessary to get to the desired step. For
example, when you run the Implement Design process, Project Navigator also runs the
Synthesis process because implementation is dependent on up-to-date synthesis results.

To view a running log of command line arguments used on the current project, expand Design

Utilities and select View Command Line Log File

Files Panel

The Files panel provides a flat, sortable list of all the source files in the project. Files can be
sorted by any of the columns in the view. Properties for each file can be viewed and modified
by right-clicking on the file and selecting Source Properties.

Libraries Panel

The libraries panel enables you to manage HDL libraries and their associated HDL source
files. You can create, view, and edit libraries and their associated sources.

Console Panel

The Console provides all standard output from processes run from Project Navigator. It
displays errors, warnings, and information messages. Errors are signified by a red X next to
the message; while warnings have a yellow exclamation mark (!).

Errors Panel

The Errors panel displays only error messages. Other console messages are filtered out.

Warnings Panel

The Warnings panel displays only warning messages. Other console messages are
filtered out.

Error Navigation to Source
You can navigate from a synthesis error or warning message in the Console, Errors, or Warnings panel

to the location of the error in a source HDL file. To do so, select the error or warning message, right-

click the mouse, and select Go to Source from the right-click menu.The HDL source file opens, and

the cursor moves to the line with the error.

Error Navigation to Answer Record

You can navigate from an error or warning message in the Console, Errors, or Warnings panel
to relevant Answer Records on the Product Support and Documentation page of the Xilinx®
website. To navigate to the Answer Record, select the error or warning message, right-click
the mouse, and select Search for Answer Record from the right-click menu. The default
Web browser opens and displays all Answer Records applicable to this message.

Workspace

The Workspace is where design editors, viewers, and analysis tools open. These include ISE
Text Editor, Schematic Editor, Constraint Editor, Design Summary/Report Viewer, RTL and
Technology Viewers, and Timing Analyzer.

Other tools such as the PlanAhead™ tool for I/O planning and floorplanning, ISim,third-party
text editors, XPower Analyzer, and iMPACT open in separate windows outside the main
Project Navigator environment when invoked.

http://www.xilinx.com/cgi-bin/docs/ndoc?l=en%3Bt%3Dsupport
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en%3Bt%3Dsupport

42

Design Summary/Report Viewer

The Design Summary provides a summary of key design data as well as access to all of the
messages and detailed reports from the synthesis and implementation tools. The summary
lists high-level information about your project, including overview information, a device
utilization summary, performance data gathered from the Place and Route (PAR) report,
constraints information, and summary information from all reports with links to the
individual reports. A link to the System Settings report provides information on environment
variables and tool settings used during the design implementation. Messaging features such as
message filtering, tagging, and incremental messaging are also available from this view.

6.2 HDL Based Design:

Overview of HDL-Based Design

This chapter guides you through a typical HDL-based design procedure using a design of a
runner‘s stopwatch. The design example used in this tutorial demonstrates many device
features, software features, and design flow practices you can apply to your own design. This
design targets a Spartan®-3A device; however, all of the principles and flows taught are
applicable to any Xilinx® device family, unless otherwise noted.

The design is composed of HDL elements and two cores. You can synthesize the design using
Xilinx Synthesis Technology (XST), Synplify/Synplify Pro, or Precision software

Required Software

To perform this tutorial, you must have Xilinx ISE® Design Suite installed.

This tutorial assumes that the software is installed in the default location
c:\xilinx\release_number\ISE_DS\ISE. If you installed the software in a different location,
substitute your installation path in the procedures that follow.

Note: For detailed software installation instructions, refer to the Xilinx Design Tools: Installation and

Licensing Guide (UG798) available from the Xilinx website

VHDL:

This software supports both VHDL and Verilog designs and applies to both designs
simultaneously, noting differences where applicable. You will need to decide which HDL
language you would like to work through for the tutorial and download the appropriate files
for that language. XST can synthesize a mixed-language design. However, this tutorial does
not cover the mixed language feature.

Starting the ISE Design Suite

To start the ISE Design Suite, double-click the Project Navigator icon on your desktop, or
select Start > All Programs > Xilinx ISE Design Suite > Xilinx Design Suite 14 > ISE
Design Tools > Project Navigator.

Figure 6.2: Project navigator Desktop

Creating a New Project

To create a new project using the New Project Wizard, do the following:

43

From Project Navigator, select File > New Project. The New Project Wizard appears.

Figure 6.3 New project Wizard- Create New Project Page

1. In the Location field, browse to c:\xilinx_tutorialor to the directory in which you
installed the project.

2. In the Name field, enter wtut_vhdor wtut_ver.

3. Verify that HDL is selected as the Top- Level Source

Type, and click Next

4. The New Project Wizard—Device Properties page

appears.

1.

5. Figure 6.4: New Project Wizard- Device Properties Page

1. Select the following values in the New Project Wizard—Device Properties page:

2. Product Category: All

3. Family: Spartan3A and Spartan3AN

4. Device: XC3S700A

44

5. Package: FG484

6. Speed: -4

7. Synthesis Tool: XST (VHDL/Verilog)

8. Simulator: ISim (VHDL/Verilog)

9. Preferred Language: VHDL or Verilog depending on preference. This
will determine the default language for all processes that generate
HDLfiles.

10. Other properties can be left at their default values.

11. Click Next, then Finish to complete the project creation.
12.

13. Stopping the Tutorial

14. You may stop the tutorial at any time and save your work by selecting File > Save

All.

15. Design Description

16. The design used in this tutorial is a hierarchical, HDL-based design, which
means that the top-level design file is an HDL file that references several other
lower-level macros. The lower-level macros are either HDL modules or IP
modules.

17. The design begins as an unfinished design. Throughout the tutorial, you will
complete the design by generating some of the modules from scratch and by completing others

from existing files. When the design is complete, you will simulate it to verify the design

functionality.

In the runner‘s stopwatch design, there are five external inputs and four external output buses.
The system clock is an externally generated signal. The following list summarizes the input and
output signals of the design.

INPUT

The following are input signals for the tutorial stopwatch design:

1. strtstop

Starts and stops the stopwatch. This is an active low signal which acts like the start/ stop button on a
runner‘s stopwatch.

1. reset

Puts the stopwatch in clocking mode and resets the time to 0:00:00.

2. clk

Externally generated system clock.

3. mode

Toggles between clocking and timer modes. This input is only functional while the clock or timer is not
counting.

4. lap_load

This is a dual function signal. In clocking mode, it displays the current clock value in the ‗Lap‘ display
area. In timer mode, it loads the pre-assigned values from the ROM to the timer display when the timer
is not counting.

45

OUTPUT

The following are outputs signals for the design:

1. lcd_e, lcd_rs, lcd_rw

These outputs are the control signals for the LCD display of the Spartan-3A demo board used to
display the stopwatch times.

1. sf_d[7:0]

Provides the data values for the LCD display.

Functional Blocks

The completed design consists of the following functional blocks:

1. clk_div_262k

Macro that divides a clock frequency by 262,144. Converts 26.2144 MHz clock into 100 Hz 50% duty
cycle clock.

2. dcm1

Clocking Wizard macro with internal feedback, frequency-controlled output, and duty-cycle correction.
The CLKFX_OUT output converts the 50 MHz clock of the Spartan-3A demo board to 26.2144 MHz.

3. debounce

Schematic module implementing a simplistic debounce circuit for the strtstop, mode, and lap_load input signals

1. lcd_control

Module controlling the initialization of and output to the LCD display.

2. statmach

State machine HDL module that controls the state of the stopwatch.

3. timer_preset

CORE Generator™ tool 64x20 ROM. This macro contains 64 preset times from 0:00:00 to 9:59:99 that
can be loaded into the timer.

4. time_cnt

Up/down counter module that counts between 0:00:00 to 9:59:99 decimal. This macro has five 4-bit
outputs, which represent the digits of the stopwatch time.

Synthesizing the Design

So far you have been using Xilinx Synthesis Technology (XST) for syntax checking. Next, you will
synthesize the design using either XST, Synplify/Synplify Pro, or Precision software. The synthesis
tool uses the design‘s HDL code and generates a supported netlist type (EDIF or NGC) for the Xilinx
implementation tools. The synthesis tool performs the following general steps (although all synthesis
tools further break down these general steps) to create the netlist:

Analyze/Check Syntax

Checks the syntax of the source code.

2. Compile

Translates and optimizes the HDL code into a set of components that the synthesis tool can recognize.

3. Map

Translates the components from the compile stage into the target technology‘s primitive components.

46

The synthesis tool can be changed at any time during the design flow. To change the synthesis tool, do

the following:

1. In the Hierarchy pane of the Project Navigator Design panel, select the targeted part.

2. Right-click and select Design Properties.

3. In the Design Properties dialog box, click the Synthesis Tool value and use the pull-down arrow

to select the desired synthesis tool from the list

Note: If you do not see your synthesis tool among the options in the list, you may not have the software

installed or may not have it configured in the ISE Design Suite. The synthesis tools are configured in

the Preferences dialog box. Select Edit > Preferences, expand ISE General, and click Integrated

Tools.

Changing the design flow results in the deletion of implementation data. You have not yet created any
implementation data in this tutorial. For projects that contain implementation data, Xilinx recommends
that you make a copy of the project using File > Copy Project if you would like to make a backup of
the project before continuing.

Figure 6.5: Specifying Synthesis Tool Synthesizing the Design Using XST

Now that you have created and analyzed the design, the next step is to synthesize the design.
During synthesis, the HDL files are translated into gates and optimized for the target
architecture.

Processes available for synthesis using XST are as follows:

 View RTL Schematic

Generates a schematic view of your RTL netlist.

 View Technology Schematic

Generates a schematic view of your technology netlist.

• Check Syntax

Verifies that the HDL code is entered properly.

• Generate Post-Synthesis Simulation Model

Creates HDL simulation models based on the synthesis netlist. Entering

Synthesis Options

47

Synthesis options enable you to modify the behavior of the synthesis tool to make optimizations
according to the needs of the design. One commonly used option is to control synthesis to make
optimizations based on area or speed. Other options include controlling the maximum fanout of a flip-
flop output or setting the desired frequency of the design.

To enter synthesis options, do the following:

1. In the Hierarchy pane of the Project Navigator Design panel, select stopwatch.vhd
(Or stopwatch.v).

2. In the Processes pane, right-click the Synthesize process, and select Process
Properties.

3. Under the Synthesis Options tab, set the Netlist Hierarchy property to a value of Rebuilt.

Note: To use this property, you must set the Property display level to Advanced.

4.Click OK.

6.4 Synthesizing the Design

Now you are ready to synthesize your design. To take the HDL code and generate a compatible
netlist, do the following:

1. In the Hierarchy pane, select stopwatch.vhd(or stopwatch.v). In the

Processes pane, double-click the Synthesize process Using the RTL/Technology

Viewer

XST can generate a schematic representation of the HDL code that you have entered. A
schematic view of the code helps you analyze your design by displaying a graphical
connection between the various components that XST has inferred. Following are the two
forms of schematic representation:

• RTL View

Pre-optimization of the HDL code.

• Technology View

Post-synthesis view of the HDL design mapped to the target technology. To view a

schematic representation of your HDL code, do the following:

1. In the Processes pane, expand Synthesize, and double-click View RTL Schematic or
View Technology Schematic.

2. If the Set RTL/Tech Viewer Startup Mode dialog appears, select
Start with the Explorer Wizard.

3. In the Create Schematic start page, select the clk_divider and lap_load_debounce
components from the Available Elements list, and then click the Add button to move the
selected items to the Selected Elements list.

4. Click Create Schematic.

Fig 6.6: RTL Schematic

The schematic viewer allows you to select the portions of the design to display as schematics.
When the schematic is displayed, double-click on the symbol to push into the schematic and

48

view the various design elements and connectivity. Right-click the schematic to view the
various operations that can be performed in the schematic viewer.

49

 CHAPTER 7

SIMULATIONS AND RESULTS

In this chapter various compressor adders like 5-3,10-4,15-4,20-5 compressor adders and 16-bit Vedic

Multiplier using compressor adders are simulated using Xilinx Vivado 2020.2 design suite and results

are presented and also performance comparison of the compressor adders in terms of area and power

utilization are presented.

7.1 SYNTHESIS RESULTS OF 5: 3 COMPRESSOR ADDER:

Fig 7.1(a) 5-3 Compressor RTL schematic diagram.

Fig 7.1(b) 5-3 Compressor Synthesis Diagram

50

Fig 7.1(c) 5-3 Compressor Power Report

Fig 7.1(d) 5-3 Compressor Area Utilization Report

7.2 SYNTHESIS RESULTS OF 10: 4 COMPRESSOR ADDER:

51

 Fig 7.2(a) 10-4 Compressor RTL Schematic Diagram

Fig 7.2(b) 10-4 Compressor Synthesis Diagram

52

Fig 7.2(c) 10-4 Compressor Power Report

Fig 7.2(d) Compressor Area Utilization Report

7.3 SYNTHESIS RESULTS OF 15: 4 COMPRESSOR ADDER:

53

Fig 7.3(a) 15-4 Compressor Schematic Diagram

 Fig 7.3(b) 15-4 Compressor Synthesis Diagram

54

Fig 7.3(c) 15-4 Compressor Power Report

Fig 7.3(d) 15-4 Compressor Area Utilization Report

7.4 SYNTHESIS RESULTS OF 20: 5 COMPRESSOR ADDER:

55

 Fig 7.4(a) 20-5 Compressor RTL Schematic Diagram

Fig 7.4(b) 20-5 Compressor Synthesis Diagram

56

Fig 7.4(c) 20-5 Compressor Power Report

Fig 7.4(d) 20-5 Compressor Area Utilization Report

57

Table 1: Comparison of Area Utilization and Power of different Compressor Adders

58

Proposed Work

In this project, we have analyzed 16-bit Vedic multiplier using higher order compressors. Figure 7.5

depicts that how partial products are grouped to compressor adders for addition.

Fig 7.5: Compressor based 16-bit multiplier

59

Simulation results of 16-bit Vedic Multiplier:

Fig 7.6: Area analysis of 16-bit VM using regular adders

Fig 7.7: Area analysis of 16-bit VM using compressor adders

60

CONCLUSION

In digital signal processing multiplication is a key operation which determines the overall performance

of the multiplier. Vedic multiplier is used as the multiplication for 16-bit operands, is explained.

Architecture is proposed with the sutra, ‗Urdhava-tiryakbhyam‘, from Vedic Mathematics which is a

basic multiplication method for multiplication. The unwanted multiplication steps are removed and

makes the parallel generation of partial products with the help of this sutra. Increase in area and delay

is less with increase in number of bits. The designed architecture involves two steps. First is the

computing each bit‘s resultant equation. Second, with the help of compressor adders executing of

equation takes place. The compressor adders result in reduction of delay by adding 4 bits at a time

which uses multiplexers in their circuit in reducing the operations of XOR Gate. Speed improvement is

seen in compressor adders 5-3, 10-4, 15-4, and 20-5. Finally, we can justify that Vedic multiplier that

are compressor dependent proves to have a convenient and useful way over conventional multipliers in

the VLSI circuits.

61

References

1. Saokar SS, Banakar RM, Siddamal S. High-speed signed multiplier for digital signal processing

applications. In: Proceedings of signal processing, computing and control (ISPCC),; 2012. p. 1–6.

doi:10.1109/ISPCC.2012.6224373.

2. Kumar A, Raman A. Low power ALU design by ancient mathematics. In: Proceedings of IEEE

international conference on aerospace and aviation engineering (ICAAE); 2010. p. 862–5.

3.Hanumantharaju MC, Jayalaxmi H, Renuka RK, Ravishankar M. A high-speed block convolution

using ancient indian Vedic mathematics. In: Proceedings of IEEE conference on computational

intelligence and multimedia applications (ICCIMA); 2007. p. 169–73. doi:10.1109/ICCIMA.2007.332.

4.Prakash AR, Kirubaveni S. Performance evaluation of FFT processor using conventional and Vedic

algorithm. In: Proceedings of IEEE conference on emerging trends in computing, communication and

nanotechnology (ICE-CCN); 2013. p. 89–94. doi:10.1109/ICE-CCN.2013.6528470.

5. Saha P, Banerjee A, Dandapat A, Bhattacharyya P. ASIC design of a high-speed low power circuit

for factorial calculation using ancient Vedic mathematics. Microelectron J 2011;42:1343–52.

 6. Ramalatha M, Thanushkodi K, Deena Dayalan K, Dharani P. A novel time and energy efficient

cubing circuit using Vedic mathematics for finite field arithmetic. In: Proceedings of advances in recent

technologies in communication and computing; 2009. p. 873–5. doi:10.1109/ARTCom.2009.227.

7. Aliparast P, Koozehkanani ZD, Khianvi AM, Karimian G, Bahar HB. A new very high-speed MOS

4-2 compressor for fast digital arithmetic circuits. In: Proceedings of mixed design of integrated

circuits and systems (MIXDES); 2010. p. 191–4.

8. Jaina D, Sethi K, Panda R. Vedic mathematics Based Multiply Accumulate Unit. In: Proceedings of

computational intelligence and communication systems (CICN); 2011. p. 754–7.

doi:10.1109/CICN.2011.167.

9. Kunchigi V, Kulkarni L, Kulkarni S. High-speed and area efficient Vedic multiplier. In: Proceedings

of international conference on devices, circuits and systems (ICDCS); 2012. p. 360–4.

doi:10.1109/ICDCSyst.2012.6188747.

10. Gu J, Chang CH. Low voltage, low power (5-2) compressor cell for fast arithmetic circuits. In:

Proceedings of international conference on acoustics, speech, and signal processing (ICASSP); 2003. p.

II-661-664. doi:10.1109/ICASSP.2003.1202453.

11 .Aliparast P. and Koozehkanani Z.D., Khiavi A.M., Karimian G., Bahar H.B.. A very high-speed

CMOS 4-2 compressor using fully differential current-mode circuit technique. Analog Integr Circ Sig

Process (2011); 66: pp. 235-243.

62

